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An example of a flow system is presented with an attractor concentrated mostly at a surface of a two-
dimensional torus, the dynamics on which is governed by the Arnold cat map. The system is composed of four
coupled nonautonomous van der Pol oscillators. Three of them have equal characteristic frequencies, and in the
other one the frequency is twice as large. The parameters controlling excitation of the two pairs of oscillators
are forced to undergo a slow counterphase periodic modulation in time. At the end of the active stage for one
pair of the oscillators, the excitation is passed to another pair, than back, and so on. In terms of a stroboscopic
Poincaré section, the respective eight-dimensional �8D� mapping, due to strong phase volume compression,
reduces approximately to a 2D map for the phases of one pair of the oscillators that corresponds approximately
to the Arnold cat map. The largest two Lyapunov exponents �one positive and one negative� are close to those
predicted with the cat map model. Estimates for the fractal dimension of the attractor of the Poincaré map are
close to 2.
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Mathematical studies in nonlinear dynamics and chaos
theory have advanced many concepts and models of funda-
mental significance. However, in some cases the relation of
them to realistic physical systems is not understood well.

In mathematically oriented textbooks and reviews, much
attention is devoted to Anosov hyperbolic automorphisms of
a torus �1–6�. The most popular example is an iterative map,

pn+1 = pn + qn �mod1� ,

qn+1 = pn + 2qn �mod1� . �1�

In the literature, it is known as Arnold’s cat map because of
the use of a picture of a cat’s face in explanations of the
action of this map in lectures and books of Arnold. For
graphical representation it is convenient to regard the phase-
space of the model as a unit square on a plane with the
opposite pairs of sides identified. The map �1� is a conserva-
tive system: any domain in the �p ,q� plane �say, that cat
face� conserves its area under iteration.

It is known that the map �1� demonstrates chaotic dynam-
ics in the sense of the hyperbolic theory of Smale and
Anosov �1–8�, with such attributes as the existence of con-
tinuous invariant measure, a possibility of description in
terms of Markov partition and symbolic dynamics, positive
topological and metric entropies, etc. Two Lyapunov expo-
nents are expressed via eigenvalues of the matrix associated
with the map, namely,

�1 = ln�3 + �5�/2 = 0.9624,

�2 = − ln�3 + �5�/2 = − 0.9624. �2�

The larger exponent is positive; that reflects the presence of
exponential sensitivity with respect to initial conditions,
which is one of the principal features of chaos.

In this paper we propose an example of a nonautonomous
flow system, in which a set of two phase variables observed
stroboscopically follows the Arnold cat map to a good ap-
proximation. The main idea is adopted from a recent work of

one of the authors �9�. The system is composed of two pairs
of coupled nonautonomous self-oscillators. Due to slow
modulation of the parameters responsible for the self-
excitation, these two pairs of oscillators become active turn
by turn, and because of the presence of appropriately intro-
duced coupling they pass the excitation from one to the
other.

To start, let us remark that because of the matrix relation,

�1 1

1 2
� = �0 1

1 1
� �0 1

1 1
� , �3�

the Arnold cat map may be represented as a twofold compo-
sition of a simpler map:

pn+1 = qn �mod1� ,

qn+1 = pn + qn �mod1� . �4�

To implement the corresponding dynamics in a physical sys-
tem, we consider a set of four coupled nonautonomous van
der Pol oscillators:

ẍ − �A cos�2�t/T� − x2�ẋ + �0
2x = �z cos �0t ,

ÿ − �A cos�2�t/T� − y2�ẏ + �0
2y = �w ,

z̈ − �− A cos�2�t/T� − z2�ż + 4�0
2z = �xy ,

ẅ − �− A cos�2�t/T� − w2�ẇ + �0
2w = �x . �5�

Three of them �x, y, and w� have equal basic frequencies �0,
and the remaining one �z� has a frequency 2�0. The control
parameter responsible for the Andronov-Hopf bifurcation in
autonomous partial systems is forced to oscillate slowly with
some period T, much larger than 2� /�0. For one half period
the first pair of oscillators �x ,y� is active, i.e., is above the
self-oscillation threshold, while the second pair �z ,w� is pas-
sive, i.e., is below the self-oscillation threshold. For the other
half period the situation is the opposite. The oscillators x and
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y affect the oscillator z via the term represented by the prod-
uct xy, which contains a component close to the doubled
basic frequency. It serves as a priming for the oscillator z as
it becomes active due to the parameter variation. At the same
time, the oscillator w accepts excitation from the oscillator x.
Then, as the active stage for the second pair of oscillators
comes to the end, the excitation returns to the first pair. Now,
the oscillator z affects the oscillator x via the coupling term
represented as the product of z and the auxiliary signal of
frequency �0, and the oscillator y accepts excitation from the
oscillator w.

We assume that the period of the slow parameter modu-
lation contains an integer number of periods of the auxiliary
signal N0=�0T /2�, so the external driving is periodic.

Let us derive relations in rough approximation for the
phases of the oscillators in the course of the process. Sup-
pose that the first and the second oscillators on an active
stage of the process have some initial phases �x and �y:

x � cos��0t + �x�, y � cos��0t + �y� . �6�

The coupling term in the third equation contains a product

xy � cos��0t + �x�cos��0t + �y�

= �1/2��cos��x − �y� + cos�2�0t + �x + �y�� . �7�

The last component in the expression is of frequency close to
that of the oscillator z and excites it effectively. So, on the
stage of activity, the third oscillator inherits the phase �z
��x+�y +const, while the fourth oscillator simply accepts
the phase of the first one: �w��x+const. At the beginning of
the next stage of activity for the oscillators x and y the cou-
pling term in the first equation

z cos �0t � �1/2��cos�3�0t + �x + �y� + cos��0t + �x + �y��
�8�

excites the oscillator x, and it acquires the phase �x���z
+const��x+�y +const. The oscillator y inherits the phase
from w: �y���w+const��x+const. So, we come to an ap-
proximate mapping for the phases,

�x� = �x + �y + const,

�y� = �x + const. �9�

With normalization q=�x /2� and p=�y /2� we obtain ex-
actly the map �4�, up to some additive constants. �By an
appropriate shift of the origin they may be removed.� Hence
the stroboscopic dynamics observed with the basic time in-
terval 2T for the phases of the oscillators �x ,y� will follow
the Arnold cat map, at least in the approximation we have
considered. One of the consequences is that the dynamics of
the phases will manifest chaos with strong statistical proper-
ties.

To support this conclusion, let us turn to direct numerical
computations for the set of nonautonomous differential equa-
tions �5�. Figure 1 shows plots for the variables x, y, z, and w
versus time in the system �5�, at parameter values

�0 = 2�, N0 = T = 20, A = 2, � = 0.4. �10�

It operates in a chaotic regime in correspondence with the
mechanism discussed. The chaotic nature of the dynamics
reveals itself in a random walk of waveforms for the oscil-
lating variables with respect to the envelope.

To demonstrate the correspondence of the dynamics to the
Arnold cat map, we implement the following procedure. In
the course of numerical integration of Eqs. �5� we determine
the phases for the first and the second oscillators in the
middle of an excitation stage as �16�

�x = arg�x − iẋ/�0� ,

�y = arg�y − iẏ/�0� . �11�

If the point �q , p�= ��x /2� ,�y /2�� hits the area of the cat
face drawn in the unit square, we mark the dot on the dia-
gram and the dots for the images after the time intervals 2T
and 4T on two subsequent plots, respectively. By accumula-
tion of a great number of dots, we can observe the cat face on
the first picture, and the images corresponding to one and
two iterations of the Arnold map on the second and the third
ones �see Fig. 2�a��.

FIG. 1. Time dependence for the dynamical variables of the
system �5� at �0=2�, T=20, A=2, �=0.4.

FIG. 2. Transformation of the area in a form of cat face in a
plane of phase variables in a system of van der Pol oscillators �5�
after time intervals 2T and 4T �a� and analogous pictures obtained
from the map �12� �b�.
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The pictures may be compared with those obtained di-
rectly from iterations of the Arnold cat map. To achieve an
accurate correspondence, we have to account for the addi-
tional constant terms in the equations, which appear in the
course of the transfer of excitations from oscillators to their
partners. With these constants empirically selected �for the
particular case under consideration, see Eq. �10�� the map
reads

pn+1 = pn + qn + 0.07 �mod1� ,

qn+1 = pn + 2qn − 0.38 �mod1� . �12�

The plots illustrating evolution of the cat face in accordance
with this map are shown in Fig. 2�b�. Observe a nice corre-
spondence between the phase dynamics in the system of non-
autonomous van der Pol oscillators and in the modified Ar-
nold cat map �12�.

For a more accurate discrete-time description, we have to
turn to the Poincaré map �4–6�. Let us have a certain state
of the system at tn=2nT, the vector xn= 	x , ẋ /�0 ,
y , ẏ /�0 ,z , ż /2�0 ,w , ẇ /�0
. From solution of the differential
equations �5� with the initial state xn, we get after time inter-
val 2T a new vector xn+1 determined uniquely by the vector
xn. Therefore we introduce a function that maps the eight-
dimensional space 	x , ẋ /�0 ,y , ẏ /�0 ,z , ż /2�0 ,w , ẇ /�0
 into
itself:

xn+1 = T�xn� . �13�

Geometrically, in the nine-dimensional extended phase
space of our nonautonomous system 	x , ẋ /�0 ,y , ẏ /�0 ,z ,
ż /2�0 ,w , ẇ /�0 , t
 we have a cross section of the flow by the
eight-dimensional hyperplanes t= tn=2nT. Because of the pe-
riodicity of the phase space in t, these hyperplanes may be
identified, and we speak of the mapping of the eight-
dimensional hyperplane 	x , ẋ /�0 ,y , ẏ /�0 ,z , ż /2�0 ,w , ẇ /�0

into itself. The Poincaré map appears due to evolution deter-
mined by differential equations with smooth and bounded
right-hand parts in a finite domain of eight variables. In ac-
cordance with theorems of existence, uniqueness, continuity,
and differentiability of solutions of differential equations, the
map T is a diffeomorphism in R8, a one-to-one differentiable
map of class C� �10�.

To have a quantitative indicator of chaos we turn to the

Lyapunov exponents. In computations, the Lyapunov expo-
nents are evaluated for the Poincaré map with the help of the
appropriately adapted algorithm of Benettin �11�. It is based
on simultaneous solution of Eqs. �5� together with a collec-
tion of eight exemplars of the linearized equations for per-
turbations:

ẍ̃ + 2xẋx̃ − �A cos�2�t/T� − x2�ẋ̃ + �0
2x̃ = �z̃ cos �0t ,

ÿ̃ + 2yẏỹ − �A cos�2�t/T� − y2�ẏ̃ + �0
2ỹ = �w̃ ,

z̈̃ + 2zżz̃ − �− A cos�2�t/T� − z2�ż̃ + 4�0
2z̃ = ��x̃y + xỹ� ,

ẅ̃ + 2wẇw̃ − �− A cos�2�t/T� − w2�ẇ̃ + �0
2w̃ = �x̃ . �14�

In the course of the solution, at the time instants t=2nT �n
=1,2 , . . . � the Gram-Schmidt orthogonalization and normal-
ization are performed for eight vectors

	x̃ , ẋ̃ /�0 , ỹ , ẏ̃ /�0 , z̃ , ż̃ /2�0 , w̃ , ẇ̃ /�0
, and the mean rates of
growth or decrease of the accumulated sums of logarithms of
the norms �after the orthogonalization but before the normal-
ization� are estimated �11�. As found, the Lyapunov expo-
nents for the attractor at the parameters �10� are �17�

�1 = 0.962, �2 = − 0.970,

�3 = − 15.525, �4 = − 19.074,

�5 = − 20.053, �6 = − 21.315,

�7 = − 32.444, �8 = − 32.898. �15�

In Fig. 3 we show a plot for all eight Lyapunov exponents
of the system of coupled nonautonomous van der Pol oscil-
lators versus the amplitude A of slow modulation at fixed
other parameters. As seen, the largest two exponents remain
almost constant in a wide interval of the parameter variation
and are close to the values characteristic to the Arnold cat
map �see Eq. �2��. The other exponents are large negative.
They correspond to strong compression of the phase volume
along six of eight dimensions of the phase space of the
Poincaré map.

Qualitatively similar dynamical behavior is observed at
other integer period ratios N0, e.g., N0=6. Figure 4 shows
portraits of the attractor at

�0 = 2�, T = 6, A = 6.5, � = 0.4. �16�

The panel �a� represents a projection of the attractor from
the nine-dimensional �9D� extended phase-space on the
plane of variables of the first oscillator �x , ẋ�. The attractor is
shown in gray scales �the darkness reflects a relative duration
of residence of the orbit inside a given pixel�. Black dots
relate to the Poincaré cross section, i.e., to the instants tn
=2nT. Panel �b� shows the attractor in the Poincaré cross
section on the plane �x , ẋ�. As expected, it looks like a pro-
jection of a two-dimensional torus. For this attractor in the
Poincaré map the Lyapunov exponents are

FIG. 3. Lyapunov exponents for the system �5� vs the amplitude
of parameter modulation at �0=2�, T=20, �=0.4.
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�1 = 0.961, �2 = − 1.021,

�3 = − 11.256, �4 = − 12.908,

�5 = − 13.794, �6 = − 15.886,

�7 = − 23.663, �8 = − 24.464. �17�

As found, now the linear toral map is not so good for the
approximate description; it is more appropriate to use the
Anosov map with added nonlinear terms:

pn+1 = pn + qn + f1�pn,qn� �mod1� ,

qn+1 = pn + 2qn + f2�pn,qn� �mod1� , �18�

where f1�p ,q� and f2�p ,q� are some smooth functions of
period 1 in respect to both arguments. To construct this more
accurate model for the dynamics under consideration, we
have to determine the functions. Taking the periodicity con-
ditions into account, they may be represented as Fourier ex-
pansions over two arguments:

f1,2�p,q� = �
n=0

M

�
m=−M

M

�An,m
1,2 cos�2 � �np + mq��

+ Bn,m
1,2 sin�2 � �np + mq�� . �19�

From computations we obtain the stroboscopic sequences
pn, qn at tn=2nT, and accumulate sufficiently long series
f1,n= pn+1− pn−qn �mod 1� and f2,n=qn+1− pn−2qn �mod 1�.
Then, we use a least square method and estimate the coeffi-
cients 	An,m

1,2 ,Bn,m
1,2 
 to obtain the best approximation for f1,n

and f2,n via the Fourier expansions �19� at some finite M.
Figure 5 shows 3D plots of the functions expressed via Eq.
�19� at M =12 �left column �a�� and, for comparison, the
empirical functions from the computations �right column
�b��.

Figure 6 illustrates distribution of invariant measure on
the attractor. Panel �a� relates to the flow system �5� and
presents a large number of dots plotted on a plane of phases
defined by relations �11� in the stroboscopic Poincaré cross
section tn=2nT. Panel �b� relates to the Anosov map �18�

with the nonlinear functions expressed via the Fourier series
obtained from our numerical estimates �see Fig. 5�. In both
cases the distribution of the density over the unit square
looks similar and manifests a subtle fractal structure. Such
distributions were discussed in the context of the problem of
the so-called “nonstrange chaotic attractor” �NCA� �12,13,6�.
In fact, the attractor in the Poincaré map of our flow system
is not “nonstrange”: it certainly has a transverse fractal struc-
ture in the eight-dimensional phase-space, but distribution of
the invariant measure over the torus approximately repre-
senting the attractor is of the nature that has been suggested
for the NCA.

To have quantitative characteristics for the fractal invari-
ant measure on the attractor, we have estimated the correla-
tion dimensions from the Grassberger-Procaccia algorithm
�12� by processing a two-component time series composed
of data for phases �11� from 105 iterations of the Poincaré
map obtained in numerical solution of Eqs. �5� �see Fig. 7�.
At the present parameter values �16� we get the dimension
D2=1.93, notably distinct from the value 2, which would
correspond to a uniform distribution of the invariant density
over the surface of the 2D torus. The estimate from the

FIG. 4. Portraits of attractor at �0=2�, T=6, A=6.5, �=0.4:
projection of the attractor from the 9D extended phase space on the
plane of variables �x , ẋ� �a� and the Poincaré cross section corre-
sponding to the instants tn=2nT that looks like a projection of 2D
torus �b�.

FIG. 5. �Color online� 3D plots of the nonlinear functions in the
right-hand parts of the Anosov map �18� from the Fourier expan-
sions �19� at M =12 �a� and empirical ones, obtained from direct
computations as described in the text �b�.

FIG. 6. Distributions of points on the attractor in projection on a
plane of phases of the first pair of oscillators in Poincaré cross
section obtained in computations for the system �5� at �0=2�, T
=6, A=6.5, �=0.4 �a� and for the Anosov map �18� �b�.
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Kaplan-Yorke formula �5� using the Lyapunov exponents
�17� yields DL=1+�1 / ��2��1.94 in good agreement with
the Grassberger-Procaccia result. For comparison, results for
the attractor used to illustrate the cat map dynamics at the
parameter set �10� are D2=1.98 �see panel �b��, and DL
=1.99, much closer to 2.

The proposed system of four coupled nonautonomous van
der Pol oscillators delivers a realistic example of dynamics
approximately described by a hyperbolic map on a torus. In

fact, we deal with an attractor in the eight-dimensional phase
space of the Poincaré map. Due to strong phase volume com-
pression, it reduces approximately to a two-dimensional map
for the phases of one pair of the oscillators that corresponds
to the Arnold cat map or to its modification with added non-
linear terms in right-hand parts of the equations. We suppose
that the attractor in the Poincaré map is in fact uniformly
hyperbolic and hence structurally stable, although an accu-
rate check of this assumption �like that in Ref. �14�� seems
not easy because of high dimension of the phase-space. In
any case, our model obviously allows implementation, e.g.,
as an electronic device on a base of coupled nonautonomous
self-oscillators �cf. Ref. �15��. In a similar way, many other
models with dynamics of phase variables governed approxi-
mately by hyperbolic toral maps may be constructed and
studied in details in numerical computations and in physical
experiments.
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